seminars@itp.ac.ru
To subscribe or unsubscribe via the World Wide Web, visit
https://mailman.itp.ac.ru/mailman/listinfo/seminars
or, via email, send a message with subject or body 'help' to
seminars-request@itp.ac.ru
You can reach the person managing the list at
seminars-owner@itp.ac.ru
When replying, please edit your Subject line so it is more specific
than "Re: Contents of Seminars digest..."
Today's Topics:
1. Friday 30.10.2023 (Serge Krashakov)
2. Friday 20.10.2023 (Serge Krashakov)
----------------------------------------------------------------------
Message: 1
Date: Wed, 18 Oct 2023 12:03:14 +0300
From: Serge Krashakov <sakr@itp.ac.ru>
To: staff@itp.ac.ru, students@itp.ac.ru, seminars@itp.ac.ru
Subject: [Landau ITP Seminars] Friday 30.10.2023
Message-ID: <32fccd32-1efb-433b-a718-4b1ca09eedf2@itp.ac.ru>
Content-Type: text/plain; charset="utf-8"; Format="flowed"
Уважаемые коллеги!
На заседании Ученого совета в пятницу 20 октября в 11:30 будет заслушан
доклад:
_С.В. Дремов (НГУ)_, А.А. Гелаш, Р.И. Мулляджанов, Д.И. Качулин
*Bi-solitons on the surface of a deep fluid: an analytical-numerical
inverse scattering transform approach*
We investigate theoretically and numerically the dynamics of long-living
bound state coherent structures, namely bi-solitons, obtained earlier in
[1] in the framework of the Zakharov equation and the exact nonlinear
RV-equations. To elucidate the long-living bi-soliton complex nature we
propose a semi-analytical approach based on the perturbation theory and
inverse scattering transform (IST) for the 1D focusing nonlinear
Schrödinger equation (NLSE). We present the Zakharov equation and the
RV-equations as the NLSE plus a right-hand side in order to apply our
approach. Then we compute the IST scattering data for a time series of
the bi-soliton wavefield, and observe a periodic energy exchange between
two solitons and continuous spectrum radiation resulting in stable
oscillations of the coherent structure. We find that soliton eigenvalues
oscillate on stable trajectories experiencing a slight drift on a scale
of hundreds of oscillation periods. In addition, after obtaining the
change of the bi-soliton eigenvalues, we observe that they are in good
agreement with predictions of the IST perturbation theory. Based on
these results we conclude that the IST perturbation theory justifies the
existence of the bound state coherent structures on the surface of deep
water which emerge as a result of a balance between the dominant
solitonic part and a portion of continuous spectrum radiation.
[1]. Kachulin, D., Dremov, S., Dyachenko, A. (2021). Bound coherent
structures propagating on the free surface of deep water. Fluids, 6(3),
115.
ID и пароль онлайн-трансляций в Zoom те же, что и для предыдущих
трансляций семинаров и докладов на Ученом совете:
https://zoom.us/j/96899364518?pwd=MzBsR2lYT0lYL2x2b1oyNU9LeWlWUT09
Meeting ID: 968 9936 4518
Пароль: 250319
При числе желающих больше 5 будет организован автобус.
Для записи на автобус из Москвы в Черноголовку необходимо до 18:00
четверга отправить письмо на адрес электронной почты bus@itp.ac.ru
После этого записавшимся до 20:00 поступит подтверждение об отправке или
неотправке автобуса в зависимости от числа записавшихся.
Запись на обратный автобус - на Ученом совете.
С. Крашаков
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://mailman.itp.ac.ru/pipermail/seminars/attachments/20231018/44c2d713/attachment-0001.htm>
------------------------------
Message: 2
Date: Wed, 18 Oct 2023 12:04:36 +0300
From: Serge Krashakov <sakr@itp.ac.ru>
To: staff@itp.ac.ru, students@itp.ac.ru, seminars@itp.ac.ru
Subject: [Landau ITP Seminars] Friday 20.10.2023
Message-ID: <781b88ea-a3a3-41ac-b6a3-63b76ef98af4@itp.ac.ru>
Content-Type: text/plain; charset="utf-8"; Format="flowed"
Уважаемые коллеги!
На заседании Ученого совета в пятницу 20 октября в 11:30 будет заслушан
доклад:
_С.В. Дремов (НГУ)_, А.А. Гелаш, Р.И. Мулляджанов, Д.И. Качулин
*Bi-solitons on the surface of a deep fluid: an analytical-numerical
inverse scattering transform approach*
We investigate theoretically and numerically the dynamics of long-living
bound state coherent structures, namely bi-solitons, obtained earlier in
[1] in the framework of the Zakharov equation and the exact nonlinear
RV-equations. To elucidate the long-living bi-soliton complex nature we
propose a semi-analytical approach based on the perturbation theory and
inverse scattering transform (IST) for the 1D focusing nonlinear
Schrödinger equation (NLSE). We present the Zakharov equation and the
RV-equations as the NLSE plus a right-hand side in order to apply our
approach. Then we compute the IST scattering data for a time series of
the bi-soliton wavefield, and observe a periodic energy exchange between
two solitons and continuous spectrum radiation resulting in stable
oscillations of the coherent structure. We find that soliton eigenvalues
oscillate on stable trajectories experiencing a slight drift on a scale
of hundreds of oscillation periods. In addition, after obtaining the
change of the bi-soliton eigenvalues, we observe that they are in good
agreement with predictions of the IST perturbation theory. Based on
these results we conclude that the IST perturbation theory justifies the
existence of the bound state coherent structures on the surface of deep
water which emerge as a result of a balance between the dominant
solitonic part and a portion of continuous spectrum radiation.
[1]. Kachulin, D., Dremov, S., Dyachenko, A. (2021). Bound coherent
structures propagating on the free surface of deep water. Fluids, 6(3),
115.
ID и пароль онлайн-трансляций в Zoom те же, что и для предыдущих
трансляций семинаров и докладов на Ученом совете:
https://zoom.us/j/96899364518?pwd=MzBsR2lYT0lYL2x2b1oyNU9LeWlWUT09
Meeting ID: 968 9936 4518
Пароль: 250319
При числе желающих больше 5 будет организован автобус.
Для записи на автобус из Москвы в Черноголовку необходимо до 18:00
четверга отправить письмо на адрес электронной почты bus@itp.ac.ru
После этого записавшимся до 20:00 поступит подтверждение об отправке или
неотправке автобуса в зависимости от числа записавшихся.
Запись на обратный автобус - на Ученом совете.
С. Крашаков
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://mailman.itp.ac.ru/pipermail/seminars/attachments/20231018/92a0d3f6/attachment-0001.htm>
------------------------------
Subject: Digest Footer
_______________________________________________
Seminars mailing list
Seminars@itp.ac.ru
https://mailman.itp.ac.ru/mailman/listinfo/seminars
------------------------------
End of Seminars Digest, Vol 57, Issue 6
***************************************
No comments:
Post a Comment